A simple proof of spin- $\frac{1}{2} X-Y$ inequalities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 12 L175
(http://iopscience.iop.org/0305-4470/12/7/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:49

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A simple proof of spin- $\frac{1}{2} \boldsymbol{X}$ - \boldsymbol{Y} inequalities

Paul A Pearce \dagger and James L Monroe \ddagger
\dagger Physics Department, Carnegie-Mellon University, Pittsburgh, Pa 15213, USA \ddagger Physics Department, Beaver Campus, Pennsylvania State University, Monaca, Pa 15061, USA

Received 30 March 1979

Abstract

A simple proof, based on duplicate variables, is presented for various correlation inequalities for the spin $-\frac{1}{2} X-Y$ model. In addition, a conjecture is made that would allow these correlation inequalities to be obtained for the general spin-s $X-Y$ model.

Gallavotti (1971) and Suzuki (1973) have derived a number of correlation inequalities for the spin $-\frac{1}{2} X-Y$ model. The proofs of these inequalities, however, are complicated by commutation difficulties and rely on the use of Trotter's formula. Here we give a simple derivation of these inequalities using duplicate variables.

The duplicate variable method of proving correlation inequalities has been highly successful for Ising models (Sylvester 1976) and vector spin models (Monroe and Pearce 1979), but so far not for quantum models. Although Ginibre (1970) proposed a possible framework for non-commutative models, examples satisfying his general theory have not been found. In contrast, the method presented here works not only for the spin- $\frac{1}{2} X-Y$ model, but has possibilities for extension to other quantum models, in particular, the general spin-s $X-Y$ model. The only inequalities known at present for this general model are comparison inequalities (Pearce 1979).

Let Λ be a finite set of sites. At each site $i \in \Lambda$ locate a spin $\sigma_{i}=\left(\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}\right)$, where $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ are the usual Pauli spin matrices acting on the vector space $\otimes_{i \in \Lambda} \mathbb{C}^{2}$. Explicitly, $\sigma_{i}^{z}=1 \otimes 1 \otimes \ldots \otimes \sigma^{z} \otimes \ldots \otimes 1$ where the 2×2 Pauli matrix σ^{z} appears as the i th factor, etc. If we set

$$
\begin{equation*}
\sigma_{A}^{2}=\prod_{i \in A} \sigma_{i}^{z} \quad \sigma_{A}^{x}=\prod_{i \in A} \sigma_{i}^{x}, \tag{1}
\end{equation*}
$$

the spin- $\frac{1}{2} X-Y$ model Hamiltonian can be written as

$$
\begin{equation*}
H(\sigma)=-\sum_{A \in \Lambda}\left(J_{A}^{z} \sigma_{A}^{z}+J_{A}^{x} \sigma_{A}^{x}\right) \tag{2}
\end{equation*}
$$

where J_{A}^{z}, J_{A}^{x} are interaction parameters.
A duplicate system is formed by associating an additional spin $\overline{\boldsymbol{\sigma}}_{i}=\left(\bar{\sigma}_{i}^{x}, \bar{\sigma}_{i}^{y}, \bar{\sigma}_{i}^{x}\right)$, where $\bar{\sigma}_{i}^{x}, \bar{\sigma}_{i}^{y}, \bar{\sigma}_{i}^{z}$ are also Pauli spin matrices, to each site $i \in \Lambda$. On the doubled system the symbols $\sigma_{i}^{2}, \bar{\sigma}_{i}^{z}$, etc, stand for the matrices $\sigma_{i}^{2} \otimes 1,1 \otimes \sigma_{i}^{z}$, etc operating on the vector space $\left(\otimes_{i \in \Lambda} \mathbb{C}^{2}\right) \otimes\left(\otimes_{i \in \Lambda} \mathbb{C}^{2}\right)$. The Hamiltonian for the doubled system is taken to be

$$
\begin{equation*}
\mathscr{H}(\boldsymbol{\sigma}, \tilde{\boldsymbol{\sigma}})=H(\boldsymbol{\sigma})+\bar{H}(\overline{\boldsymbol{\sigma}}) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{H}(\overline{\boldsymbol{\sigma}})=-\sum_{A \subset A}\left(\bar{J}_{A}^{z} \bar{\sigma}_{A}^{z}+\bar{J}_{A}^{x} \bar{\sigma}_{A}^{x}\right) . \tag{4}
\end{equation*}
$$

Here $\bar{\sigma}_{A}^{2}, \bar{\sigma}_{A}^{x}$, are defined similarly to $\sigma_{A}^{2}, \sigma_{A}^{x}$ and $\bar{J}_{A}^{2}, \bar{J}_{A}^{x}$ are interaction parameters which may or may not be the same as J_{A}^{2}, J_{A}^{x}.

Let P be the (non-commutative) multiplicative cone generated by the variables $\sigma_{i}^{z} \pm \tilde{\sigma}_{i}^{z}, \widetilde{\sigma}_{i}^{x} \pm \sigma_{i}^{x}, i \in \Lambda$, so that $f g, f+g$ and $a f \in P$ whenever $f, g \in P$ and $a \geqslant 0$. If $f \in P$ and $-\mathscr{H} \in P$ we assert that

$$
\begin{equation*}
\langle f\rangle \equiv \operatorname{Tr} f \exp (-\mathscr{H}) / \operatorname{Tr} \exp (-\mathscr{H}) \geqslant 0, \tag{5}
\end{equation*}
$$

where for convenience we have set the inverse temperature $\beta=1$. Furthermore, we claim that this remarkable inequality has the following consequences for the spin $-\frac{1}{2} X-Y$ model (2):

$$
\begin{align*}
& \left\langle\sigma_{A}^{z}\right\rangle \geqslant 0 \quad\left\langle\sigma_{A}^{z} \sigma_{B}^{z}\right\rangle-\left\langle\sigma_{A}^{z}\right\rangle\left\langle\sigma_{B}^{z}\right\rangle \geqslant 0 \tag{6}\\
& \partial\left\langle\sigma_{A}^{z}\right\rangle / \partial J_{B}^{z} \geqslant 0 \quad \partial\left\langle\sigma_{A}^{z}\right\rangle / \partial J_{B}^{x} \leqslant 0, \tag{7}
\end{align*}
$$

under the conditions $J_{A}^{2} \geqslant 0, J_{A}^{x} \geqslant 0$ for all $A \subset \Lambda$.
To prove (5) we proceed as follows. Since $\exp h \in P$ whenever $h \in P$, we only need prove $\operatorname{Tr} g \geqslant 0$ for all $g \in P$. Moreover, by linearity of the trace, it suffices to consider the case when g is a product of the variables $\left(\sigma_{i}^{z} \pm \bar{\sigma}_{i}^{z}\right),\left(\bar{\sigma}_{i}^{x} \pm \sigma_{i}^{x}\right), i \in \Lambda$. But now, because the trace factors over the sites, $\operatorname{Tr} g$ will be non-negative if

$$
\begin{equation*}
\operatorname{Tr} \Pi\left(\sigma^{z} \pm \bar{\sigma}^{z}\right)\left(\bar{\sigma}^{x} \pm \sigma^{x}\right) \geqslant 0 \tag{8}
\end{equation*}
$$

where the product sign indicates an arbitrary product of the four factors. The left-hand side of (8) can be written as

$$
\begin{equation*}
\sum_{\mu, \bar{\mu}= \pm 1}\langle\mu \bar{\mu}| \Pi\left(\sigma^{2} \otimes 1 \pm 1 \otimes \sigma^{2}\right)\left(1 \otimes \sigma^{x} \pm \sigma^{x} \otimes 1\right)|\mu \bar{\mu}\rangle \tag{9}
\end{equation*}
$$

where the trace has been evaluated in the product basis $|\mu \bar{\mu}\rangle=|\mu\rangle|\bar{\mu}\rangle$ and the Ising variables $\mu= \pm 1$, etc label the eigenstates of $\sigma^{2} ; \sigma^{z}|\mu\rangle=\mu|\mu\rangle$. Inserting intermediate complete sets of states,

$$
\begin{equation*}
\sum_{\mu, \bar{\mu}= \pm 1}|\mu \bar{\mu}\rangle\langle\mu \bar{\mu}| \equiv 1 \tag{10}
\end{equation*}
$$

between each factor in the product, it is easily verified that the resulting matrix elements are given by

$$
\begin{align*}
& \langle\mu \bar{\mu}| \sigma^{2} \otimes 1 \pm 1 \otimes \sigma^{2}\left|\mu^{\prime} \bar{\mu}^{\prime}\right\rangle=\frac{1}{4}(\mu \pm \bar{\mu})\left(1+\mu \mu^{\prime}\right)\left(\mu \mu^{\prime}+\bar{\mu} \bar{\mu}^{\prime}\right) \\
& \langle\mu \bar{\mu}| 1 \otimes \sigma^{x}+\sigma^{x} \otimes 1\left|\mu^{\prime} \bar{\mu}^{\prime}\right\rangle=\frac{1}{4} \mu \mu^{\prime}\left(\mu \mu^{\prime}-\bar{\mu} \bar{\mu}^{\prime}\right) \tag{11}\\
& \langle\mu \bar{\mu}| 1 \otimes \sigma^{x}-\sigma^{x} \otimes 1\left|\mu^{\prime} \bar{\mu}^{\prime}\right\rangle=\frac{1}{4}\left(\mu \mu^{\prime}-\bar{\mu} \bar{\mu}^{\prime}\right) .
\end{align*}
$$

Each of these belongs to the multiplicative convex cone Q generated by all the variables $(\mu \pm \bar{\mu}),\left(\mu^{\prime} \pm \bar{\mu}^{\prime}\right),\left(\mu^{\prime \prime} \pm \bar{\mu}^{\prime \prime}\right)$, etc. Thus the required result (8) follows from the Ising duplicate variable inequality

$$
\begin{equation*}
\sum_{\mu, \overrightarrow{i= \pm 1}} \sum_{\mu_{i} \tilde{i}^{\prime}= \pm 1} \ldots f \geqslant 0 \tag{12}
\end{equation*}
$$

which holds (Sylvester 1976) for all $f \in Q$.
To obtain inequalities (6) and (7) from (5), notice that $\sigma_{A}^{x} \pm \bar{\sigma}_{A}^{x}, \bar{\sigma}_{A}^{x} \pm \sigma_{A}^{x} \in P$, and hence $-\mathscr{H} \in P$ provided $\left|\bar{J}_{A}^{z}\right| \leqslant J_{A}^{x}$ and $\left|J_{A}^{x}\right| \leqslant \bar{J}_{A}^{x}$ for all $A \subset \Lambda$. Now to obtain the inequalities (6) set $\bar{J}_{A}^{z}=J_{A}^{2}, \bar{J}_{A}^{x}=J_{A}^{x}$ for all $A \subset \Lambda$ and choose $f=\sigma_{A}^{z} \in P$ and $f=$
$\sigma_{A}^{z}\left(\sigma_{B}^{z}-\tilde{\sigma}_{B}^{z}\right) \in P$ in (5). Alternatively, if we require $J_{A}^{z}>\bar{J}_{A}^{z} \geqslant 0, \bar{J}_{A}^{x}>J_{A}^{x} \geqslant 0$ for all $A \subset \Lambda$ and choose $f=\sigma_{A}^{z}-\bar{\sigma}_{A}^{2} \in P$ in (5) we find that

$$
\begin{align*}
& \left(\left\langle\sigma_{A}^{z}\right\rangle-\left\langle\bar{\sigma}_{A}^{z}\right\rangle\right) /\left(J_{B}^{z}-\bar{J}_{B}^{z}\right) \geqslant 0 \tag{13}\\
& \left(\left\langle\sigma_{A}^{z}\right\rangle-\left\langle\bar{\sigma}_{A}^{z}\right\rangle\right) /\left(J_{B}^{x}-\bar{J}_{B}^{x}\right) \leqslant 0 .
\end{align*}
$$

Now taking the limits $\bar{J}_{A}^{z} \rightarrow J_{A^{-}}^{z}, \bar{J}_{A}^{x} \rightarrow J_{A}^{x}$ for all $A \subset \Lambda$ we obtain the inequalities (7).
In conclusion, we remark that it seems reasonable to conjecture that the crucial inequality (8) holds when σ is a general spin- s angular momentum operator. In this case the inequalities (6) and (7) would hold for the spin-s $X-Y$ model. We have been unable either to prove this conjecture or to find a simple counterexample. It should be observed, however, that the inequality (8) does hold (Monroe and Pearce 1979) in the classical limit $s \rightarrow \infty$ (Lieb 1973) and yields the known correlation inequalities (Kunz et al 1976) in this case.

We wish to thank Professor R B Griffiths for his interest in this work. This research has been supported in part by NSF grant No DMR 76-23071.

References

Gallavotti G 1971 Studies Appl. Math. 50 89-92
Ginibre J 1970 Commun. Math. Phys. 16 310-28
Kunz H, Pfister C E and Vuillermot P A 1976 J. Phys. A: Math. Gen. 9 1673-83
Lieb E H 1973 Commun. Math. Phys. 31 327-40
Monroe J L and Pearce P A 1979 submitted for publication
Pearce P A 1979 Phys. Lett. to be published
Suzuki M 1973 J. Math. Phys. 14 837-8
Sylvester G S 1976 J. Stat. Phys. 15 327-41

